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Abstract

An asymptotic solution of the Schrödinger equation with non-separable
variables is obtained for a particle confined to an infinite elliptic cylinder
potential well under an applied uniform longitudinal magnetic field. Using
the standard-problem method, dimension-quantized eigenvalues have been
calculated when the magnetic length is large enough in comparison with
the half of the distance between the boundary ellipse focuses. In semi-
classical approximation, the confined electron (hole) states are divided into
the boundary states (BS), ring states (RS), hyperbolic caustic states (HCS)
and harmonic oscillator states (HOS). For large angular momentum quantum
numbers and small radial quantum numbers, the BS and RS are grouped into
the ‘whispering gallery’ mode. They associate with particles moving along
the wire cross section boundary. The motion is limited from the wire core
by the elliptic caustic. Consisting of the HCS and HOS, the ‘jumping ball’
modes correspond to the states of particle moving along a wire diameter when
the angular momentum quantum number is much less than the radial quantum
number. In this case, the motion is restricted by the hyperbolic caustics and two
boundary ellipse arcs. For excited hole states in a Bi wire, the energy spectrum
and space probability distribution are analyzed.

PACS numbers: 03.65.Sq, 71.70.Di
Mathematics Subject Classification: 35J10, 35P20

1. Introduction

The study of the factor of a carrier mass anisotropy in the thermoelectric and magnetotransport
phenomena has attracted much interest [1, 2]. The most promising thermoelectric materials are
multi-valley IV–VI semiconductor compounds and bismuth-like semimetals with anisotropic
effective mass carrier parameters [3, 4]. The given paper presents a mathematical background
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to study magnetic quantum oscillations of nanowire electronic characteristics in a weak
magnetic field, the carrier mass anisotropy being considered. We consider the elliptic cylinder
quantum well model because the problem of size quantization of a carrier, with anisotropic
effective mass parameters, in a cylindrical well is equivalent to that of a carrier with some
isotropic effective mass in an elliptical well [5].

• Subject. The subject of the paper is the high energy spectrum of the magnetic Schrödinger
operator in an elliptic cylinder. We do not consider the free motion of particles along the
wire here. In general, the problem under study is the small magnetic field perturbation
of the non-magnetic Laplacian. The Schrödinger equation presents an ordinary partial
differential equation of the second order with non-separable variables. Firstly, Nedorezov
considered this equation using perturbation theory [6]. He obtained the eigenvalues
corresponding to the ring state (RS) and boundary state (BS) eigenvalues from our theory.

• Method. To solve the Schrödinger equation, we apply the standard-problem method
(etalon problem method) [7]. Initially, we reduced our equation to that with a known
solution. In the absence of a magnetic field, the solution of the Schrödinger equation in
the elliptic domain has been obtained earlier [8, 9]. The solution of the simplified equation
is used to elaborate the trial function. In our case, the trial function presents a product of
the exponent function and either an Airy function or a parabolic cylinder function. The
argument of the functions is asymptotic expansion in terms of ω−1/3 (or ω−1/2), where ω is
a large parameter (eigenvalue). The coefficients in front of the parameter ω are unknown
functions of two independent space variables. Then, we substitute the trial function in
the original equation. Equating the corresponding coefficients in front of powers ω−r,
we obtain a set of recurrent differential equations. The unknown functions are obtained
as a solution of this set of equations. Applying the boundary condition, we calculate
eigenvalues of the Schrödinger equation. The justification that the formal solutions
elaborated in the standard-problem method reflect the behavior of the real solutions of the
differential equation has been made previously [7, 10].

We describe the electron (hole) motion in the wire cross section by using caustics. This
term is widely used in optics and theory of quantum resonators [9, 11–14]. A caustic is a
locus where the rays of geometrical optics have an envelope; at a caustic, the amplitude has a
singularity and the asymptotic expansion of geometrical optics is not valid. Kravtsov [15] and
Ludwig [10] independently arrived at a means of overcoming this difficulty by introducing the
asymptotic solution involving the Airy function. This solution is reduced to the geometrical
optics solution on one side of the caustic. It is exponentially damped on the other side of the
caustic. The solution remains finite at the caustic.

• Coverage. Two main approximations are used in the paper. First, we use semi-classical
approximation valid for highly excited states. Second, the applied magnetic field is
supposed to be small enough, so that the magnetic length, LB = √

h̄/eB, is greater than
the half of the distance between the boundary ellipse focuses c:

cL−1
B < 1.

The surface particle scattering is assumed to possess a high degree of specularity. Hence,
the model of an infinite cylinder quantum well is used. The transport mean free path of the
particle is more or of the same order as the wire diameter. The spin of the particle is not taken
into account.

• Purpose. The main goal of the paper is to study how the longitudinal magnetic field
applied to the elliptic wire affects the energy spectrum and caustic of electrons (holes)
with isotropic mass.
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The structure of the paper is as follows. Section 2 is devoted to mathematical aspects for
the calculation of the eigenfunction, eigenvalue and corresponding caustic coordinate of the
BS and RS. Section 3 examines the hyperbolic caustic states (HCS) and harmonic oscillator
states (HOS). The numerical results for the all hole states in Bi wire are discussed in section 4.
The outline of the obtained results is given in section five.

2. Whispering gallery modes

2.1. Boundary states

Let us obtain eigenvalues and eigenfunctions of the Schrödinger equation in the elliptic domain
when the uniform magnetic field is applied along the z-axis. In this case, the Schrödinger
equation reads [6] as

∂2�

∂ξ 2
+

∂2�

∂ϕ2
+ Ed2[ch2(ξ) − cos2(ϕ)]� − i

c2

2L2
B

[
sin(2ϕ)

∂�

∂ξ
+ sh(2ξ)

∂�

∂ϕ

]

−
(

c2

4L2
B

)2

[sh2(2ξ) + sin2(2ϕ)]� = 0. (2.1)

The relation between the rectangular and elliptic system of coordinates is x = c · ch(ξ) cos(ϕ)

and y = c · sh(ξ) sin(ϕ), where c = R
√

m1 − m2(m1m2)
1
4 is half of the distance between the

ellipse focuses, 0 � ξ � +∞, 0 � ϕ � 2π . d = (R/h̄)
√

2(m1 − m2) is short notation.
The wire boundary is supposed to be impenetrable for a particle. The boundary condition

is

�(ξ̄ , ϕ) = 0, (2.2)

where ξ̄ is the coordinate of the ellipse boundary such that th(ξ̄ ) = √
m2/m1. In this section,

we solve equation (2.1) for the functions localized near the ellipse boundary. These functions
correspond to particles moving periodically along the ellipse boundary. These states are called
‘whispering gallery’ modes [5, 16]. The second boundary condition is that the eigenfunction
is single valued:

�(ξ, ϕ + 2π) = �(ξ, ϕ). (2.3)

First, we expand functions ch2(ξ), sh(2ξ), sh2(2ξ) in terms of variable ξ at boundary ξ̄ in
equation (2.1). To solve equation (2.1), we use the following trial function [7]:

�(ξ, ϕ) = U(ν, ϕ) = C exp

[
i

M∑
m=−3

αm(ν, ϕ)ω− m
3

]
ϑ

[
M∑

m=0

βm(ν, ϕ)ω− m
3

]
, (2.4)

where the dimensionless eigenvalue ω = 2d
√

E is supposed to be large, and αm(ν, ϕ) and
βm(ν, ϕ) are polynomials in ν. ν = ω2/3(ξ − ξ̄ ) is a new variable corresponding to the
reduced distance from the point, ξ̄ , to the ellipse boundary and ϑ(Z) is the Airy function [17]
(ϑ(Z) = √

πA i(Z)). Formula (2.4) is substituted in equation (2.1). We use the following
property of the Airy function ϑ ′′(Z) = Zϑ(Z). We rewrite equation (2.1) collecting the terms
at ϑ(Z) and ϑ ′(Z):

a(αj , βj ;ω−1/3)ϑ(Z) + b(αj , βj ;ω−1/3)ϑ ′(Z) = 0, (2.5)

where Z =
M∑

m=0
βm(ν, ϕ)ω

−m
3

a(αj , βj ;ω−1/3) = ω4/3

[
M−1∑
m=−6

am(αj , βj )ω
−m

3 + O(ω
−M

3 )

]
,
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b(αj , βj ;ω−1/3) = ω4/3

[
M−1∑
m=−3

bm(αj , βj )ω
−m

3 + O(ω
−M

3 )

]
.

Functions ϑ(Z) and ϑ ′(Z) are linear independent. Therefore, coefficients a(αj , βj ;ω−1/3)

and b(αj , βj ;ω−1/3) should be equal to zero concomitantly in equation (2.5). The following
system of equations for polynomials αj and β j is obtained:

am(αj , βj ) = 0, m � −6, (2.6)

bm(αj , βj ) = 0, m � −3. (2.7)

Letting m = −6, −5, −4 in equation (2.6), we obtain

a−6(αj , βj ) = −
(

∂α−3

∂ν

)2

= 0,

a−5(αj , βj ) = −2

(
∂α−3

∂ν

) (
∂α−2

∂ν

)
= 0,

a−4(αj , βj ) = −
(

∂α−2

∂ν

)2

− 2

(
∂α−3

∂ν

) (
∂α−1

∂ν

)
= 0.

From these equations, it follows that

∂α−3

∂ν
= ∂α−2

∂ν
= 0, (2.8)

i.e. α−2 = α−2(ϕ), α−3 = α−3(ϕ). Taking into account equation (2.8), we can write the
following six equations from system (2.6) and (2.7) at m = −3, −2, −1 as

a−3(αj , βj ) = 0,

a−2(αj , βj ) = −
(

∂α−1

∂ν

)2

−
(

∂α−3

∂ϕ

)
+

1

4
[ch2(ξ̄ ) − cos2(ϕ)] = 0,

a−1(αj , βj ) = i

(
∂2α−1

∂ν2

)
− 2

(
∂α−3

∂ϕ

) (
∂α−2

∂ϕ

)
− 2

(
∂α−1

∂ν

)(
∂α0

∂ν

)
= 0, (2.9)

b−3(αj , βj ) = 0,

b−2(αj , βj ) = 0,

b−1(αj , βj ) = i2

(
∂α−1

∂ν

) (
∂β0

∂ν

)
= 0.

The last equation from system (2.9) is satisfied when ∂α−1

∂ν
= 0 or ∂β0

∂ν
= 0. Supposing that

∂β0

∂ν
= 0, we reach to contradiction with the known solution of equation (2.1) for the circle

boundary when the magnetic field is absent [7]. Hence, we let ∂α−1

∂ν
= 0. Then we obtain from

system (2.9) (
∂α−3

∂ϕ

)2

= 1

4
[ch2(ξ̄ ) − cos2(ϕ)], (2.10)

∂α−2

∂ϕ
= 0. (2.11)

From equation (2.10), we obtain

α−3(ν, ϕ) = α−30(ϕ) = ±1

2

∫ ϕ

d−3

√
ch2(ξ̄ ) − cos2(τ ) dτ , (2.12)
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where d−3 is an arbitrary constant. Two signs in (2.12) get two solutions of equation (2.1)
corresponding to the motion of the particle in clockwise and anticlockwise manners along the
boundary.

From relations (2.8) and (2.11), we obtain that α−2 is a constant:

α−2 = d−2. (2.13)

Taking into account relations (2.6)–(2.8) and (2.13), we write the next two equations of system
(2.6) and (2.7) at m = 0:

a0(αj , βj ) = i

(
∂2α0

∂ν2

)
−

(
∂α0

∂ν

)2

+ β0

(
∂β0

∂ν

)2

− 2

(
∂α−3

∂ϕ

)(
∂α−1

∂ϕ

)
+

ν

4
sh(2ξ̄ ) = 0,

(2.13a)

b0(αj , βj ) = i2

(
∂α0

∂ν

)(
∂β0

∂ν

)
+

(
∂2β0

∂ν2

)
= 0. (2.14)

We eliminate derivatives ∂α0
∂ν

and ∂2α0
∂ν2 by using equation (2.14). We get

−2

(
∂3β0

∂ν3

) (
∂β0

∂ν

)
+ 3

(
∂2β0

∂ν2

)2

+ 4β0

(
∂β0

∂ν

)4

∓ 4

(
dα−1

dϕ

)(
∂β0

∂ν

)2 √
ch2(ξ̄ ) − cos2(ϕ) + ν · sh(2ξ̄ )

(
∂β0

∂ν

)2

= 0.

(2.15)

Let us suppose that β0(ν, ϕ) is a polynomial in ν of order l:

β0(ν, ϕ) = β0l (ϕ)νl + · · · + β00(ϕ). (2.16)

The left-hand side of equation (2.15) is a polynomial of order 5l − 4 when l � 2:

l4β5
0l (ϕ)ν5l−4 + · · · = 0. (2.17)

Equation (2.17) is satisfied if all coefficients are equal to zero:

β0l (ϕ) = 0 if l � 2.

Therefore, β0(ν, ϕ) may be only a polynomial of the first order in ν, i.e.

β0(ν, ϕ) = β01(ϕ)ν + β00(ϕ). (2.18)

Substituting expression (2.18) into equation (2.15), we obtain[
4β3

01(ϕ) + sh(2ξ̄ )
] · ν + 4β00(ϕ)β2

01(ϕ) ∓ 4

(
dα−1

dϕ

) √
ch2(ξ̄ ) − cos2(ϕ) = 0. (2.19)

From the above equation, we obtain

β01(ϕ) ≡ β01 = −
[
sh(2ξ̄ )

4

]1/3

.

Function β00(ϕ) will be obtained from the boundary conditions lately. The last term in
equation (2.19) should be equal to zero:

α−1(ν, ϕ) = α−10(ϕ) = ±β01

∫ ϕ

d−1

β00(τ ) dτ√
ch2(ξ̄ ) − cos2(τ )

. (2.20)

From equation (2.14), it follows that α0(ν, ϕ) is a polynomial of the zero order because
β0(ν, ϕ) is the polynomial of the first order:

α0(ν, ϕ) = α00(ϕ).

5
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To find polynomials α1(ν, ϕ), β1(ν, ϕ) and function α00(ϕ), we consider the equations of
system (2.6) and (2.7) at m = 1. Taking into account relations (2.12), (2.13), (2.18) and
(2.20), we get

i
∂2α1

∂ν2
+ 2β01 (β01ν + β00)

∂β1

∂ν
+ β2

01β1 ∓
√

ch2(ξ̄ ) − cos2(ϕ)
dα00

dϕ

= ∓ i

2

cos(ϕ) sin(ϕ)√
ch2(ξ̄ ) − cos2(ϕ)

∓
(

c

2LB

)2

sh(2ξ̄ )

√
ch2(ξ̄ ) − cos2(ϕ) (2.21)

i2β01
∂α1

∂ν
+

∂2β1

∂ν2
= ∓i

√
ch2(ξ̄ ) − cos2(ϕ)

dβ00

dϕ
. (2.22)

Eliminating function α1(ν, ϕ) from equation (2.21), we obtain

−∂3β1

∂ν3
+ 4β2

01(β01ν + β00)
∂β1

∂ν
+ 2β3

01β1 ∓ 2β01

√
ch2(ξ̄ ) − cos2(ϕ)

dα00

dϕ

= ∓iβ01
cos(ϕ) sin(ϕ)√

ch2(ξ̄ ) − cos2(ϕ)
∓

(
c

LB

)2
β01

2
sh(2ξ̄ )

√
ch2(ξ̄ ) − cos2(ϕ). (2.23)

Let us suppose that β1(ν, ϕ) is a polynomial of the lth order in form (2.16). After substituting
into equation (2.23), we obtain that it can be only a polynomial of the zero order:

β1(ν, ϕ) = β10(ϕ). (2.24)

Function β10(ϕ) is defined from the boundary conditions. Both sides of equation (2.23) depend
only on variable ϕ because β1 does not depend on ν. Integrating both sides of the equation,
we obtain

α00(ϕ) = ±β01

∫ ϕ

d0

β10(τ ) dτ√
ch2(ξ̄ ) − cos2(τ )

+
i

2
ln[

√
ch2(ξ̄ ) − cos2(ϕ)]

+

(
c

2LB

)2

sh(2ξ̄ )(ϕ − d0), (2.25)

where d0 is an arbitrary constant.
Substituting (2.24) into (2.22) and integrating this equation with respect to variable ν, we

find α1(ν, ϕ) which is a polynomial of the first order:

α1(ν, ϕ) = α11(ϕ)ν + α10(ϕ) = ∓
√

ch2(ξ̄ ) − cos2(ϕ)

2β01

dβ00

dϕ
ν + α10(ϕ). (2.26)

Polynomials α2(ν, ϕ), β2(ν, ϕ) and function α10(ϕ) are obtained from the system of
equations (2.6) and (2.7) when m = 2:

β2(ν, ϕ) = β22(ϕ)ν2 + β21(ϕ)ν + β20(ϕ), (2.27)

where

β22(ϕ) ≡ β22 = −ch(2ξ̄ )

20

[
4

sh(2ξ̄ )

] 2
3

,

β21(ϕ) = −4

3

β22

β01
β00(ϕ) ∓ cos(ϕ) sin(ϕ)

6β3
01

dβ00

dϕ
∓ [ch2(ξ̄ ) − cos2(ϕ)]

6β3
01

d2β00

dϕ2
.

β20(ϕ) is defined from the boundary conditions

α10(ϕ) = ∓8

3
β22

∫ ϕ

d1

β2
00(τ ) dτ√

ch2(ξ̄ ) − cos2(τ )
− 1

3β3
01

∫ ϕ

d1

sin(τ ) cos(τ )β00(τ )√
ch2(ξ̄ ) − cos2(τ )

(
dβ00

dτ

)
dτ

6
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− 1

3β2
01

∫ ϕ

d1

β00(τ )

√
ch2(ξ̄ ) − cos2(τ )

(
d2β00

dτ 2

)
dτ

± β2
01

∫ ϕ

d1

β20(τ ) dτ√
ch2(ξ̄ ) − cos2(τ )

∓ 1

4β2
01

∫ ϕ

d1

√
ch2(ξ̄ ) − cos2(τ )

(
dβ00

dτ

)2

dτ ∓
∫ ϕ

d1

β2
00(τ ) dτ

[ch2(ξ̄ ) − cos2(τ )]3/2
. (2.28)

Polynomial α2(ν, ϕ) is

α2(ν, ϕ) = i
β22

β01
ν ± i

√
ch2(ξ̄ ) − cos2(ϕ)

2β01

dβ10

dϕ
ν +

(
c

2LB

)2

sin(2ϕ)ν + α20(ϕ).

Function α20(ϕ) and polynomials α3(ν, ϕ), β3(ν, ϕ) are defined from system (2.6) and (2.7)
when m = 3.

The solution of equation (2.1) can be written as

U±(ν, ϕ) = const · exp
{
i
[
α−30ω + α−2ω

2
3 + α−10ω

1
3 + α00 + α1ω

− 1
3
]}

×ϑ
(
β0 + β1ω

− 1
3 + β2ω

− 2
3
)
, (2.29)

where polynomials α−30(ϕ), α−2, β0(ν, ϕ), α−10(ϕ), β1(ν, ϕ), α00(ϕ), α1(ν, ϕ) and β2(ν, ϕ)
are defined by means of formulae (2.12), (2.13), (2.18), (2.20) and (2.24)–(2.27). Substituting
solution (2.29) into boundary condition (2.2) and reducing the exponent function, we obtain
equation

ϑ
[
β0(ν̄, ϕ) + β10(ϕ)ω− 1

3 + β2(ν̄, ϕ)ω− 2
3
] = 0. (2.30)

Functions βm0(ϕ) are defined from equation (2.30):

β00(ϕ) = −tp, when p = 1, 2, . . .

βm0(ϕ) = 0, when m � 1.
(2.31)

The zeros of the Airy function [17] are t1 = 2.338 11, t2 = 4.087 95, t3 = 5.520 56, t4 = 6.786 71
and t5 = 7.944 17. When the value of the parameter p is large, the following asymptotic formula
can be applied:

tp =
[

3π

2

(
p − 1

4

)]2/3

.

Terms αm0(ϕ) of polynomial αm(ν, ϕ), when m � −3, are expressed by means of integrals
with a variable upper limit and a constant lower limit. Choosing an appropriate constant factor
in solution (2.29), we can take all lower limits of integration dm to be equal to zero, i.e.

αm(0, 0) = 0 when m � −3. (2.32)

Taking into account conditions (2.31) and (2.32), we obtain the following expressions for
αm0(ϕ) using formulae (2.12), (2.13), (2.20), (2.25) and (2.28) when m = −3, −2, −1, 0, 1:

α−30(ϕ) = ±
∫ ϕ

0

√
ch2(ξ̄ ) − cos2(τ ) dτ ,

a−20 = 0,

α−10(ϕ) = ∓tp

[
sh(2ξ̄ )

4

] 2
3
∫ ϕ

0

dτ√
ch2(ξ̄ ) − cos2(τ )

,

α00(ϕ) = i

4
ln[ch2(ξ̄ ) − cos2(ϕ)] +

(
c

2LB

)2

sh(2ξ̄ )ϕ,

7
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α10(ϕ) = ∓t2
p

[
sh(2ξ̄ )

4

] 4
3
∫ ϕ

0

dτ

[ch2(ξ̄ ) − cos2(τ )]
3
2

± 2

15
t2
pch(2ξ̄ )

[
4

sh(2ξ̄ )

] 2
3
∫ ϕ

0

dτ√
ch2(ξ̄ ) − cos2(τ )

.

One can show that c2sh(2ξ̄ ) = 2R2. The solution of equation (2.1) is written in the second-
order approximation as

U±
p (ν, ϕ) = const

4
√

ch2(ξ̄ ) − cos2(ϕ)
exp

{
±i

ω

2

∫ ϕ

0

√
ch2(ξ̄ ) − cos2(τ ) dτ

}

× exp

{
∓ iω

1
3 tp

(
R

c
√

2

) 4
3
∫ ϕ

0

dτ√
ch2(ξ̄ ) − cos2(τ )

+ i

(
R

LB

√
2

)2

ϕ

∓ iω
−1
3 t2

p

(
R

c
√

2

)8/3 ∫ ϕ

0

dτ

[ch2(ξ̄ ) − cos2(τ )]3/2

}

× exp

{
±iω

−1
3

2t2
pch(2ξ̄ )

15

(
c
√

2

R

)4/3 ∫ ϕ

0

dτ√
ch2(ξ̄ ) − cos2(τ )

}

× ϑ

{
−tp −

(
R

c
√

2

)2/3

ν − ω
−2
3

(
c
√

2

R

)4/3
ch(2ξ̄ )

20
ν2 + ω

−2
3

4

15
tpcth(2ξ̄ )ν

}
.

(2.33)

If function f (x) is even, a periodic function with a period 2π , i.e. f (−x) = f (x) and
f (x + 2π ) = f (x), then∫ ϕ+2π

0
f (x) dx =

∫ 2π

0
f (x) dx +

∫ ϕ

0
f (x) dx. (2.34)

Solution (2.33) is substituted into the second boundary condition given by formula (2.3).
Taking into consideration property (2.34), we obtain the second quantization condition for the
energy spectrum

ωp,q

2

∫ 2π

0

√
ch2(ξ̄ ) − cos2(τ ) dτ − ω1/3

p,q

(
R

c
√

2

)4
3

tp

∫ 2π

0

dτ√
ch2(ξ̄ ) − cos2(τ )

±
(

R

LB

)2

π

−ω−1/3
p,q

(
R

c
√

2

) 8
3

t2
p

∫ 2π

0

dτ

[ch2(ξ̄ ) − cos2(τ )]3/2

+ ω−1/3
p,q

2

15

(
c
√

2

R

) 4
3

t2
pch(2ξ̄ )

∫ 2π

0

dτ√
ch2(ξ̄ ) − cos2(τ )

= 2πq, (2.35)

where q is an integer corresponding to an angular momentum quantum number such that q �
p. Formula (2.35) can be reduced to the result obtained by Bogachek and Gogadze [16] for
the energy spectrum of a particle moving in the circular cylinder under an applied longitudinal
magnetic field.

The Airy function ϑ(Z) oscillates when Z < 0 and exponentially decreases when Z > 0.
Hence, function Up,q(ν, ϕ) oscillates in the ring defined by

νec < ν � 0.

8
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The elliptic caustic coordinate νec is defined from the equation

−tp + β01νec + ω
−2
3

p,qβ22ν
2
ec + ω

−2
3

p,q

(
4β22

3β01

)
tpνec = 0. (2.36)

The solution of equation (2.36) in the first order of approximation is

νec = −tp

(
c
√

2

R

)2/3

.

Finally,

ξec = ξ̄ − tp

(
h̄2

4
√

m1m2Ep,qR2

)1/3

. (2.37)

Formula (2.37) shows that the large angular momentum quantum number q causes the
narrowing of the boundary elliptic ring accessible for electron (hole) motion.

Therefore, for the particle moving along the elliptic boundary, expressions (2.33) and
(2.35) define the eigenfunction and eigenvalue of equation (2.1) respectively. The influence
of the magnetic field on the elliptic caustic coordinate is estimated by means of the eigenvalue
ωp,q from formula (2.36). The effect of the magnetic field on the elliptic caustic is uniform
along the whole length of the caustic.

2.2. Ring states

Let us consider the states of a particle moving in the vicinity of the elliptic caustic. To solve
the Schrödinger equation (2.1), we expand functions ch2(ξ ), sh(2ξ ), sh2(2ξ ) in terms of ξ at
the elliptic caustic coordinate ξec. Solution of equation (2.1) is given by the trial function (2.4)
where ν = ω2/3 (ξ − ξec). Applying the method described in the previous subsection, we get
similar results where the parameter ξ̄ is replaced by ξ ec.

Solution (2.29) contains the Airy function ϑ(Z). Argument Z of the Airy function is
equal to zero at the caustic. Hence, terms βm0(ϕ), where m � 0, are defined by equations

βm0(ϕ) = 0, if m � 0. (2.38)

The first quantization condition for the energy spectrum is obtained from the boundary
condition (2.2) using relations (2.38):

ω2/3
p,q

[
sh(2ξec)

4

] 1
3
[
(ξ̄ − ξec) +

cth(2ξec)

5
(ξ̄ − ξec)

2

]
= tp. (2.39)

One can demonstrate that condition (2.39) presents the series expansion in terms of (ξ̄ − ξec),
limited to its first two terms, for a more general condition

3

4
ωp,q

∫ ξ̄

ξec

√
ch2(ξ) − ch2(ξec) dξ = t3/2

p . (2.40)

In the second-order approximation, the solution of equation (2.1) is

U±(ν, ϕ) = const
4
√

ch2(ξec) − cos2(ϕ)

× exp

{
±i

ω

2

∫ ϕ

0

√
ch2(ξec) − cos2(τ ) dτ + i

(
c

2LB

)2

sh(2ξec)ϕ

}

×ϑ

{
−

(
sh(2ξec)

4

)1/3

ν − ω
−2
3

(
4

sh(2ξec)

)2/3
ch(2ξec)

20
ν2

}
. (2.41)

9
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Using function (2.41), we obtain the second quantization condition for the energy spectrum
from relation (2.3):

ωp,q

2

∫ 2π

0

√
ch2(ξec) − cos2(τ ) dτ ±

(
c

LB

)2
π · sh(2ξec)

2
= 2πq, (2.42)

where q is an integer angular momentum quantum number such that q � p. The first integral
in formula (2.42) corresponds to the elliptic caustic length. The second term gives the ratio
of the area bounded by the elliptic caustic, Se = π · c2sh(ξec)ch(ξec), to the magnetic length
LB. Nedorezov [6] obtained the quantization conditions for the energy spectrum similar to
expressions (2.40) and (2.42) in the framework of perturbation theory. The eigenvalue, ωp,q, of
equation (2.1) and elliptic caustic coordinate ξ ec are calculated from the system of nonlinear
equations (2.40) and (2.42). In the case of a boundary state, the eigenvalue and caustic
coordinate are obtained from two distinct equations. Eigenfunction (2.40) and eigenvalue ωp,q

of equation (2.1) correspond to a particle moving along rays in the elliptic ring between the
boundary ξ̄ and the elliptic caustic ξ ec.

3. Jumping ball modes

3.1. Hyperbolic caustic states

Let us study the motion of the particle with a small angular momentum quantum number
and a large radial quantum number in the elliptic wire cross section under an applied weak
longitudinal magnetic field. Our scope in this section is to find an asymptotic solution of the
Schrödinger equation in the wire cross section core. In the absence of the magnetic field,
this solution corresponds to particles moving between two focuses of the boundary ellipse
and reflecting under a big tilt angle toward the boundary. The hyperbolic caustics and elliptic
boundary restrict the motion of the particles [5]. The corresponding states of the particle are
attributed to ‘jumping ball’ modes introduced in the short-wavelength diffraction theory [7].
In this subsection, we pay attention to the solution defined in the vicinity of the hyperbolic
caustic. Further, for convenience, we use a new elliptic system of coordinates

x = c · ch(ξ) sin(ϕ), y = c · sh(ξ) cos(ϕ),

where −∞ < ξ < +∞ and −π/2 < ϕ < π/2. The Schrödinger equation reads in this
coordinate system as

∂2�

∂ξ 2
+

∂2�

∂ϕ2
+ Ed2[ch2(ξ) − sin2(ϕ)]� − i

c2

2L2
B

[
sin(2ϕ)

∂�

∂ξ
− sh(2ξ)

∂�

∂ϕ

]

−
(

c2

4L2
B

)2

[sh2(2ξ) + sin2(2ϕ)]� = 0. (3.1)

The boundary condition is

�(±ξ̄ , ϕ) = 0. (3.2)

The operation of complex conjugation and simultaneous replacement ϕ → −ϕ do not change
equation (3.1). Therefore, the following property for the eigenfunction is stated:

�(ξ, ϕ) = ±�∗ (ξ,−ϕ) . (3.3)

From formula (3.3), we can deduce the second boundary condition

Re{�(ξ, 0)} = 0

Re{� ′
ϕ(ξ, 0)} = 0.

(3.4)

10
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At a hyperbolic caustic coordinate ϕhc, functions sin2(ϕ), sin(2ϕ) and sin2(2ϕ) are expanded in
terms of ϕ. To solve equation (3.1), we use the trial function (2.4). A new variable ν is defined
as ν = ω2/3 (ϕ − ϕhc). Using the method described in section 2.2, we obtain the solution of
equation (3.1) in the form

U±(ξ, ν) = const
4
√

ch2(ξ) − sin2(ϕhc)

× exp

{
±i

ω

2

∫ ξ

0

√
ch2(τ ) − sin2(ϕhc) dτ + i

(
c

2LB

)2

sin(2ϕhc)ξ

}

×ϑ

{(
sin(2ϕhc)

4

)1/3

ν + ω
−2
3

(
4

sin(2ϕhc)

)2/3 cos(2ϕhc)

20
ν2

}
. (3.5)

The first quantization condition for the energy spectrum is obtained by substituting solution
(3.5) into the boundary condition (3.4)

ω2/3
p,q

[
sin(2ϕhc)

4

]1/3

ϕhc

[
1 − ctg(2ϕhc)

5
ϕhc

]
=

{
tq

t ′q

}
, (3.6)

where q = 1, 2, 3, . . . , t ′q is the root of the equation ϑ ′(Z) = 0. The first five values of
parameter t ′q are [17, 18] t ′1 = 1.018 79, t ′2 = 3.248 20, t ′3 = 4.820 10, t ′4 = 6.163 31 and t ′5 =
7.372 18. At a large value of index p, the asymptotic formula is t ′q = [(3π/2)(q − 3/4)]2/3.
The first equation from system (3.6) corresponds to the even HCS and the second to the odd
HCS.

The general solution of equation (3.1) is

�(ξ, ϕ) = A+�+(ξ, ϕ) + A−�−(ξ, ϕ). (3.7)

Substituting solution (3.7) into the boundary condition (3.2), we obtain the following system
of linear algebraic equations for unknowns A− and A+:

A+ exp

[
i
ω

2

∫ ξ̄

0

√
ch2(τ ) − sin2(ϕhc) dτ

]
+ A− exp

[
−i

ω

2

∫ ξ̄

0

√
ch2(τ ) − sin2(ϕhc) dτ

]
= 0

A+ exp

[
−i

ω

2

∫ ξ̄

0

√
ch2(τ ) − sin2(ϕhc) dτ

]
+ A− exp

[
i
ω

2

∫ ξ̄

0

√
ch2(τ ) − sin2(ϕhc) dτ

]
= 0.

(3.8)

The given system of equations has a nontrivial solution if the determinant of the coefficients
of system (3.8) is equal to zero:

i2 sin

(
ω

∫ ξ̄

0

√
ch2(τ ) − sin2(ϕhc) dτ

)
= 0.

So, we obtain the second quantization condition for the energy spectrum

ωp,q

∫ ξ̄

0

√
ch2(τ ) − sin2(ϕhc) dτ = πp, (3.9)

where p = 1, 2, 3, . . . is an integer such that p � q. For quantum resonators designed on
the base of elliptic mirrors in the absence of a magnetic field, formulae (3.6) and (3.9) can be
reduced to the quantization condition obtained by Bykov and Weinstein [9].

Using expressions (3.8) and (3.9), we get the following relation between coefficients A−
and A+:

A+ = (−1)p+1A−. (3.10)

11
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Using formula (3.10), we write the general solution of equation (3.1) as follows:

�p,q(ξ, ϕ) = const
4
√

ch2(ξ) − sin2 (ϕhc)

× exp

[
i

(
c

2LB

)2

sin(2ϕhc)ξ

]
sin
cos

{
ωp,q

2

∫ ξ

0

√
ch2(τ ) − sin2(ϕhc) dτ

}

×ϑ

{
ω2/3

p,q

[
sin(2ϕhc)

4

] 1
3
[
(ϕ − ϕhc) +

ctg(2ϕhc)

5
(ϕ − ϕhc)

2

]}
. (3.11)

In formula (3.11), sin (cos) is taken if p is even (odd). A large number p is the number of a
half-wave oscillation of function (3.11) along the y-axis and q is the number of its half-wave
oscillations along the x-axis. The eigenvalue obtained from the first equation of system (3.6)
corresponds to an even number of the eigenfunction oscillations along the x-axis. The second
equation corresponds to an odd number of the eigenfunction oscillations.

Therefore, the HCS eigenvalue of equation (3.1) and the value of the corresponding
hyperbolic caustic coordinate are obtained from the system of nonlinear equations (3.6) and
(3.9) respectively. The HCS eigenfunction is given by formula (3.11). In the first-order
approximation, for a small value of the angular momentum quantum number, the HCS energy
of the particle moving between two hyperbolic caustics and hyperbolic caustic coordinate
itself are independent of the magnetic field.

3.2. Harmonic oscillator states

We consider a particle with a little magnetic quantum number. The HOS particle is supposed
to be more localized at the least ellipse axis in comparison with that corresponding to the
hyperbolic caustic state. In this case, if the magnetic field is neglected, then equation (2.1) is
reduced to the equation of the harmonic oscillator [12].

We rewrite equation (3.1) using a new variable ν = ω1/2 sin(ϕ):

∂2�

∂ξ 2
+ ω

(
1 − ν2

ω

)
∂2�

∂ν2
− ν

∂�

∂ν
+

ω2

4

[
ch2(ξ) − ν2

ω

]
� − i

(
c√
2LB

)2
√

1 − ν2

ω

×
[

2ν√
ω

∂�

∂ξ
− sh(2ξ)

√
ω

∂�

∂ν

]
−

(
c

2LB

)4[
sh2(2ξ) +

4ν2

ω

(
1 − ν2

ω

)]
� = 0.

(3.12)

One expands function
√

1 − ν2/ω in terms of ν2/ω at the zero point. To solve equation (3.12),
we use the trial function [7]

�(ξ, ϕ) = U(ξ, ν) = exp

[
i

M−1∑
m=−2

αm(ξ, ν)ω
−m

2

]
Dq

[√
2

M−1∑
m=0

βm(ξ, ν)ω
−m

2

]
, (3.13)

where Dq(
√

2Z) is a function of the parabolic cylinder [19] which satisfies the following
equation:

d2Dq(
√

2Z)

dZ2
+ [(2q + 1) − Z2]Dq(

√
2Z) = 0.

Functions αm(ξ , ν) and βm(ξ , ν) are polynomials of order m in ν. Substituting the trial function
(3.13) into equation (3.12), we obtain the following expression:

a(ξ, ν;ω)Dq[
√

2Z(ξ, ν, ω)] + b(ξ, ν;ω)
dDq[

√
2Z(ξ, ν, ω)]

dZ
= 0. (3.14)

12
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Equation (3.14) is satisfied if coefficients a(ξ , ν; ω) and b(ξ , ν; ω) at linear independent

functions Dq(
√

2Z) and dDq(
√

2Z)

dZ
, respectively, are equal to zero. Expanding functions

a(ξ , ν; ω) and b(ξ , ν; ω) in series in terms of ω−1/2, we get

a (ξ, ν;ω) = ω

M−1∑
m=−4

am(ξ, ν)ω
−m

2 = 0,

b (ξ, ν;ω) = ω

M−1∑
m=−2

bm(ξ, ν)ω
−m

2 = 0.

(3.15)

Coefficients am(ξ , ν) and bm(ξ , ν) contain partial derivatives of polynomials αm(ξ , ν) and
βm(ξ , ν) respectively. Equations (3.15) are satisfied if

am(ξ, ν) = 0, m = −4,−3,−2, . . . (3.16)

bm(ξ, ν) = 0, m = −2,−1, 0, . . . . (3.17)

Expressions (3.16) and (3.17) present the system of recurrent equations in partial derivatives
of polynomials αm(ξ , ν) and βm(ξ , ν) respectively. Taking m = −4, −3 and m = −2, −1 in
equations (3.16) and (3.17), correspondingly, we obtain

a−4(ξ, ν) = −
(

∂α−2

∂ν

)2

= 0

a−3(ξ, ν) = −2

(
∂α−2

∂ν

) (
∂α−1

∂ν

)
= 0

b−2(ξ, ν) = i
√

2

(
∂α−2

∂ν

) (
∂β0

∂ν

)
= 0

b−1(ξ, ν) = i
√

2

(
∂α−2

∂ν

) (
∂β1

∂ν

)
− i

√
2ν2 ∂α−1

∂ν
= 0.

The above equations show that α−2(ξ , ν) and α−1(ξ , ν) do not depend on ν. Hence, they are
polynomials of zero order in ν:

α−2(ξ, ν) = α−20(ξ),

α−1(ξ, ν) = α−10(ξ).
(3.18)

Taking into account formulae (3.18), we write the following relations at m = −2, −1 from
equation (3.16):

a−2(ξ, ν) = −
(

∂α−2

∂ξ

)2

+
ch2(ξ)

4
= 0,

a−1(ξ, ν) = 2

(
∂α−2

∂ξ

) (
∂α−1

∂ξ

)
= 0.

From these equations, it follows that

α−2(ξ, ν) ≡ α−20(ξ) = ± 1
2 [sh(ξ) − sh (d−2)] ,

α−10(ξ) = d−1,
(3.19)

where d−1 and d−2 are arbitrary constants. Taking into consideration the obtained relations,
we write the following set of equations from system (3.16) and (3.17) at m = 0:

a0(ξ, ν) = ±i
sh(ξ)

2
∓ ch(ξ)

∂α0

∂ξ
+ i

∂2α0

∂ν2
−

(
∂α0

∂ν

)2

+

(
∂β0

∂ν

)2

β2
0 − (2q + 1)

(
∂β0

∂ν

)2

− ν2

4
= 0 (3.20)

13
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b0(ξ, ν) = i2

(
∂α0

∂ν

)(
∂β0

∂ν

)
+

∂2β0

∂ν2
± ich(ξ)

∂β0

∂ξ
= 0. (3.21)

From equation (3.21), it follows that α0(ξ , ν) is a polynomial of the second order in ν:

α0(ξ, ν) = α00(ξ) + α01(ξ)ν + α02(ξ)ν2. (3.22)

From expressions (3.22) and (3.20), it follows that β0(ξ , ν) is a polynomial of the first order
in ν:

β0(ξ, ν) = β00(ξ) + β01(ξ)ν. (3.23)

Substituting polynomials (3.22) and (3.23) into equations (3.20) and (3.21) respectively, we
obtain[∓ch(ξ)α′

02 − 4α2
02 + β4

01 − 1/4
] · ν2 +

[∓ch(ξ)α′
01 − 4α01α02 + 2β00β

3
01

] · ν

± i [sh(ξ)/2] ∓ ch(ξ)α′
00 + i2α02 − α2

01 + β2
00β

2
01 − (2q + 1) β2

01 = 0 (3.24)

[4α02β01 ± β ′
01ch(ξ)] · ν + 2α01β01 ± ch(ξ)β ′

00 = 0. (3.25)

Equation (3.25) is satisfied if the coefficients in front of ν and ν0 are equal to zero. Hence, we
obtain

α01 = ∓ch(ξ)
β ′

00

2β01
, α02 = ∓ch(ξ)

β ′
01

4β01
. (3.26)

Expressions (3.26) are substituted into (3.24). Taking into account that the coefficients in
front of ν2, ν and ν0 are equal to zero, we obtain the equations for calculating β00, β01 and α00

respectively:

ch(ξ)

[
ch(ξ)

β ′
01

4β01

]′
− 4

[
ch(ξ)

β ′
01

4β01

]2

+ β4
01 − 1

4
= 0, (3.27)

ch(ξ)

[
ch(ξ)

β ′
00

2β01

]′
− 4α01α02 + 2β00β

3
01 = 0, (3.28)

ch(ξ)α′
00 = i

sh(ξ)

2
+ i2α02 ∓ ch2(ξ)

(
β ′

00

2β01

)2

± β2
01β

2
00 ∓ (2q + 1) β2

01. (3.29)

To solve equation (3.27), we introduce a new function F(ξ) = √
ch(ξ)/2β−1

01 . Using this
function, we rewrite equation (3.27) as

F ′′ +
1

4

[
3

ch2(ξ)
− 1

]
F = 1

F 3
. (3.30)

The solution of equation (3.30) reads as [7]

F(ξ) =
√√√√ 2∑

r,t=1

artfr(ξ)ft (ξ),

where (f1, f2) is the fundamental solution system of the equation

f ′′ +
1

4

[
3

ch2(ξ)
− 1

]
f = 0, (3.31)

where ‖art‖ is a symmetric matrix which satisfies the normalized condition

det‖art‖ · [W(f1, f2)]
2 = 1, (3.32)

14
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where Wronskian W (f1, f2) = f1f
′
2 − f ′

1f2. By introducing a new variable t = th(ξ ),
equation (3.31) is reduced to the associated Legendre differential equation [19]. The solution
of the considered equation is

f1(ξ) = 1/
√

ch(ξ), f2(ξ) = sh(ξ)/
√

ch(ξ). (3.33)

Substituting functions (3.33) into the normalized condition (3.32), we define the elements of
the matrix ‖art‖ as

a11 = a22 = 1, a12 = a21 = 0.

Therefore, the solution of equation (3.30) is

F(ξ) =
√

ch(ξ). (3.34)

Using the definition of function F(ξ ) and formula (3.34), we obtain

β01 =
√

1/2. (3.35)

Substituting formula (3.35) into expression (3.26) for α02, we get

α02 = 0. (3.36)

Taking into account formulae (3.35) and (3.36), equation (3.28) for an unknown function
β00(ξ ) can be written in the form

ch(ξ)[ch(ξ)β ′
00]′ + β00 = 0. (3.37)

The solution of equation (3.37) can be written as [7]

β00(ξ) = f (ξ)

F (ξ)
= B1

1

ch(ξ)
+ B2th(ξ), (3.38)

where B1 and B2 are arbitrary constants defined from the boundary conditions. From
expressions (3.26) and (3.38), we obtain that

α01 = B1th(ξ) − B2
1

ch(ξ)
.

The function α00(ξ ) is defined from (3.29) using expressions (3.35), (3.36) and (3.38):

α00(ξ) = i

2
ln[ch(t)]

∣∣∣∣
ξ

d0

± B1,2

2

th(t)

ch(ξ)

∣∣∣∣
ξ

d0

∓
(

q +
1

2

)
arctg [sh(ξ)] . (3.39)

The next pair of equations (3.16) and (3.17) at m = 1 reads as

a1(ξ, ν) = −ch(ξ)
∂α1

∂ξ
+ i

∂2α1

∂ν2
− 2

(
∂α0

∂ν

) (
∂α1

∂ν

)
+

√
2β2

0
∂β1

∂ν
+ β0β1 −

√
2 (2q + 1)

∂β1

∂ν

+
c2

2L2
B

[
ν · ch(ξ) − sh(2ξ)

∂α0

∂ν

]
= 0 (3.40)

b1(ξ, ν) = ich(ξ)
∂β1

∂ξ
+

∂2β1

∂ν2
+ i2

(
∂α0

∂ν

)(
∂β1

∂ν

)
+ i

√
2
∂α1

∂ν
+ i

1√
2

c2

2L2
B

sh(2ξ) = 0.

From equations (3.40), it follows that α1(ξ ,ν) is a polynomial of the first order in ν and
β1(ξ , ν) is a polynomial of the zero order:

α1(ξ, ν) = α11(ξ)ν + α10(ξ), β1(ξ, ν) ≡ β10(ξ). (3.41)
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Substituting a pair of polynomials (3.41) into the system of equations (3.40), we obtain[
−ch(ξ)α′

11 +
β10√

2
+

c2

2L2
B

ch(ξ)

]
· ν

+

[
−ch(ξ)α′

10 − 2α01α11 + β10β00 − c2

2L2
B

sh(2ξ)α01

]
= 0 (3.42)

ch(ξ)β ′
10 +

√
2α11 +

1√
2

c2

2L2
B

sh(2ξ) = 0. (3.43)

We express α11 from equation (3.43):

α11 = −ch(ξ)√
2

β ′
10 − 1

4

c2

L2
B

sh(2ξ). (3.44)

Formula (3.44) is substituted into (3.42). We obtain an equation for β10(ξ ) from the condition
that the coefficients in front of ν are equal to zero in formula (3.42):

ch(ξ)[ch(ξ)β ′
10]′ + β10 = −

√
2

c2

L2
B

ch3(ξ). (3.45)

Equating the left-hand side of equation (3.45) to zero, we get the inhomogeneous
equation (3.37). So, the general solution of equation (3.45) is

β10(ξ) = β00(ξ) − 1√
2

c2

L2
B

ch(ξ).

Solution (3.13) tends to zero when ν → ±∞ if index q is a positive integer, i.e. q = 0, 1,
2, . . . . In this case, the function of the parabolic cylinder can be expressed in terms of the
Hermit polynomial such that Hq(−x) = (−1)qHq(x) [19]. The boundary condition (3.3) is
satisfied with accuracy O(ω−1/2) when B1 = B2 = 0. Therefore, we obtain

β0 (ν) = ±ν/
√

2,

α01 = 0,

β1(ξ) = − 1√
2

c2

L2
B

ch(ξ),

α1 = const.

(3.46)

Taking into consideration formulae (3.19), (3.23), (3.35), (3.36), (3.39) and (3.46), solution
(3.13) can be written in the first-order approximation as

U±(ξ, ν)= 1√
ch(ξ)

exp

{
± iω

2
sh(ξ) ∓ i

(
q +

1

2

)
arctg[sh(ξ)]

}
Dq

[
ν − ω−1/2 c2

L2
B

ch(ξ)

]
.

(3.47)

Solution (3.47) satisfies the boundary condition (3.2). Repeating the calculation given in
subsection 3.1, we obtain the following quantization condition for the energy spectrum:

ωp,q = 1

sh(ξ̄ )
{πp + (2q + 1)arctg[sh(ξ̄ )]}, (3.48)

where p is an integer number such that p � q. Formula (3.48) can be obtained from (3.9)
when the hyperbolic caustic coordinate ϕhc is rather small. At the neighborhood of the least
axis of the boundary ellipse, the general asymptotic solution of equation (3.1) is as follows:

Up,q(ξ, ν) = const√
ch(ξ)

sin
cos

{
ωp,q

2
sh(ξ) −

(
q +

1

2

)
arctg [sh(ξ)]

}
Dq

[
ν − ω−1/2

p,q

c2

L2
B

ch(ξ)

]
.

(3.49)
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sin(cos) is taken when p is even (odd) in formula (3.49). The function of the parabolic cylinder
Dq(

√
2Z) can be expressed in terms of the Hermit polynomial Hq(Z) when the index q is an

integer [19]:

Dq(
√

2Z) = exp{−Z2/2}Hq(Z).

Formulae (3.48) and (3.49) coincide to those obtained by Buldyrev in the absence of the
magnetic field [8].

Function Dq(
√

2Z) exponentially decreases when |Z| >
√

2q + 1. Hence, function
Up,q(ξ , ν) oscillates in the band defined by the inequality

sin(ϕ) � ±ω−1/2
p,q

√
2q + 1 + ω−1

p,q

c2

L2
B

ch(ξ). (3.50)

The equation in expression (3.50) gives the value of the hyperbolic caustic coordinate ϕhc of
the right (left) hyperbola branch when the plus (minus) sign is taken in front of the radical.
Formula (3.50) is satisfied at large values of number p. In the first order of approximation,
the eigenvalue is not dependent on the magnetic field for the harmonic oscillator states.
Nevertheless, the magnetic field affects the hyperbolic caustic. This effect is not uniform. It
increases towards the ellipse boundary.

4. Numerical calculation

We consider the energy spectrum of the holes confined in the bismuth circular wire when the
energy lies in the vicinity of the valence band T-point. The eigenvalue of equation (2.1) is
proportional to the square root of the absolute value of the hole energy measured from the top
of the bismuth T-valence band. In the rhombohedral system of coordinates, the bismuth wire
is grown along direction [1 0 1̄ 1]. In the wire cross section, the values of the effective mass
components of the T-hole pocket are m1 = 0.0590 m0 and m2 = 0.3261 m0 [1]. In this case, the
mass anisotropy is rather large. Hence, in the equivalent isotropic effective mass model for an
elliptic potential well, the boundary is represented as a rather elongated ellipse. The half of
the distance between the boundary ellipse focuses is c = 693 nm when the wire radius is R =
500 nm. The parameter c is less than the wire radius when the mass anisotropy is small. In
this case, the ellipse eccentricity (measure of the ellipse elongation) is e = 0.9.

Let us consider the dependence of the eigenvalue of the boundary states (BS) on quantum
numbers q and p as well as on an applied magnetic field. Figure 1(a) presents dependence
of the dimensionless eigenvalue, ω(p, q, λ), on an angular momentum quantum number q at
different values of p. The radial quantum number, p, corresponding to the boundary state
sub-band is taken to be equal to 1, 2 and 3. The quantum number q corresponds to different
modes of the BS sub-band. The number λ is equal to +1 and −1. It indicates the parallel
and antiparallel directions of the magnetic field along the wire. The magnetic length, LB, is
supposed to be twice the wire radius R. Figure 1 shows that the step height of the eigenvalue
staircase decreases when the quantum number q increases. For example, ω(1, 2, +1) −ω(1, 20,
+1) = 2.61, ω(1, 121, +1) − ω(1, 120, +1) = 2.50. The split of the energy levels provided
by the applied magnetic field slightly decreases (increases) when the quantum number q (p)
increases. For instance, ω(1, 20, +1) – ω(1, 20, −1) = 2.62, ω(1, 120, +1)−ω(1, 120, −1) =
2.50, ω(2, 120, +1) − ω(2, 120, −1) = 2.54. Acting in opposite directions, the magnetic
field symmetrically shifts the energy level with respect to the unperturbed level position. For
example, ω(1, 120, +1) − ω(1, 120, 0) = 1.25 and ω(1, 120, 0) − ω(1, 120, −1) = 1.25,
where ω(1, 120, 0) is the energy value at the zero magnetic field (λ = 0). The split between the
eigenvalues due to the applied magnetic field leads to the following relation: ω(p, q + 1, −1) =
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(a) (b)

Figure 1. (a) Dependence of the boundary state hole dimensionless eigenvalue on the angular
momentum quantum umber, q, for two opposite directions of the magnetic field, λ = +1, −1, with
the radial quantum numbers p = 1, 2, 3. (b) Dependence of the even and odd harmonic oscillator
state dimensionless eigenvalue on the radial quantum number, p, at q = 1, 2. Bismuth wire radius
R = 500 nm.

ω(p, q, +1). The difference between the eigenvalues corresponding to different values of p
increases when q increases, that is, the distance between the sub-band edges increases. For
example, ω(2, 20, +1) − ω(1, 20, +1) = 9.29, ω(3, 20, +1) − ω(2, 20, +1) = 7.95, ω(2, 120,
+1) − ω(1, 120, +1) = 15.8, ω(3, 120, +1) − ω(2, 120, +1) = 13.1. The difference between
the eigenvalues decreases at a fixed value of q and increasing p. Therefore, the density of
boundary states tends to increase when p increases and vise versa when q increases.

At given values of the hole mass components, the wire boundary coordinate is ξ bound =
0.454 in the elliptic system of coordinates. The elliptic coordinate is ξ ec = 0.240 and ξ ec

= 0.3704 when the set of quantum numbers {p, q} is correspondingly given by {1, 30} and
{1, 120} at one direction of the magnetic field.

The respective eigenvalues are ω(1, 30, +1) = 87.7 and ω(1, 120, +1) = 315. If the
direction of the magnetic field is changed, then the elliptic coordinate is ξ ec = 0.238 and
ξ ec = 0.3703, correspondingly. In this case, the eigenvalues are ω(1, 30, +1) = 85.1 and
ω(1, 120, +1) = 312 respectively. The split between the caustic coordinates due to the
applied magnetic field decreases when the quantum number q increases. In the presence of
the magnetic field, the following relation ξ ec(p, q + 1, −1) = ξ ec(p, q, +1) is valid. At a fixed
radial quantum number p, the particle comes near to the boundary when the magnetic quantum
number q increases. The applied magnetic field pushes the particle toward the boundary for
one field direction and repulses it for the opposite direction. For example, the elliptic caustic
coordinate is ξ ec = 0.240, ξ ec = 0.239 and ξ ec = 0.238 at λ = +1, λ = 0 and λ = −1 (p = 1,
q = 30), respectively.

In the rectangular system of coordinates, the equation of the elliptic caustic is given by
equation

x2

a2
+

y2

b2
= 1.

The half of the longitudinal and transverse axes is a = 465.56 nm and b = 257.3 nm
(a/b = 1.809, eccentricity e = 0.833) when q = 30, p = 1 and λ = +1, and a = 484 nm,
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b = 403 nm (a/b = 1.2, eccentricity e = 0.55), respectively, when q = 120, p = 1 and
λ = +1. The ratio of the longitudinal to the transverse axis and eccentricity, i.e. the caustic
anisotropy factor, decrease and the elliptic caustic tends to the circular wire boundary when
the magnetic quantum number increases. The half of the longitudinal and transverse axes is
a = 465.42 nm and b = 255.9 nm (a/b = 1.82, eccentricity e = 0.835) when
q = 30, p = 1 and λ = −1, and a = 465.49 nm, b = 256.6 nm (a/b = 1.814, eccentricity
e = 0.834) when q = 30, p = 1 and λ = 0. Hence, the caustic anisotropy factor increases
or decreases in dependence on the direction of the magnetic field. When the radial quantum
number increases, the boundary ring becomes wider at a fixed angular momentum quantum
number.

Our calculations show that the split between caustics corresponding to opposite directions
of the magnetic field exponentially decays with an increasing ratio LB/R. The elliptic caustic
does not intersect the boundary under an applied magnetic field in a quasi-classical limit.
For example, ξ ec = 0.248 and ξ ec = 0.371 at q = 30 and q = 120, respectively (LB/R = 1,
p = 1, λ = +1), whereas ξ bound = 0.454. Hence, the idea of Bogachek and Gogadze [16] that
the oscillations of the physical magnitudes in the magnetic field are due to the intersections of
the caustic with the cylindrical wire boundary is not valid. The numerical calculation shows
that the elliptic caustic varies linearly with the increase of the magnetic field.

The dependence of the eigenvalue on quantum numbers and space variation of the caustic
coordinate are mainly similar for both the BS and RS. The difference is as follows. For the
ring states, the eigenvalue is less and the localization domain is greater in comparison with
those for the boundary state at the same quantum numbers q and p. For example, ω(1, 30,
+1) = 86.4, ξ ec(1, 30, +1) = 0.235 for the ring state when q = 30 and p = 1. Relations ω(p,
q + 1, −1) = ω(p, q, +1) and ξ ec(p, q + 1, −1) = ξ ec(p, q, +1) are not valid for the RS. For
instance, ω(1, 31, −1) = 88.7, ω(1, 30, +1) = 86.4, ξ ec(1, 31, −1) = 0.239 and ξ ec(1, 30, 1) =
0.235. The reason for this difference is that the term proportional to the magnetic field in the
dispersion relation (2.42) includes the caustic coordinate that depends on quantum numbers.

Figure 1(b) shows the dependence of the eigenvalue, ω(p, q), for the hyperbolic caustic
state (HCS) on the quantum number, p, at different values of q. The quantum number q
corresponding to the HCS sub-band is taken to be equal to 1, 2. There are two different
states corresponding to the same quantum number q. One of the states corresponds to the
even number of oscillations of the wavefunction along the x-axis. The other state corresponds
to the odd number of the oscillations. The quantum number p corresponds to different
modes of the HCS sub-band. In our approximation, the HCS energy does not depend on the
magnetic field. The distance between the energy levels corresponding to the different modes
of the same HCS sub-band is conserved with the increase of the quantum number p. For
example, ωeven(31, 1) − ωeven(30, 1) = 6.68 and ωeven(111, 1) − ωeven(110, 1) = 6.68. The
distance between the different band edges is also conserved. For instance, ωeven(40, 2) −
ωeven(40, 1) = 3.64, ωeven(120, 2) − ωeven(120, 1) = 3.64, ωeven(40, 2) − ωodd(40, 1) = 5.61
and ωeven(120, 2) − ωodd(120, 1) = 5.61. Hence, the density of the hyperbolic caustic states
is constant. For corresponding sub-bands, the eigenvalue for the hyperbolic caustic state is
almost three times greater than that for the ring state at the similar set of quantum numbers q
and p ({1, 30} and {30, 1}). The energy levels (with similar numbers p and q) of corresponding
sub-bands coincide for the HCS and HOS with the exception of the odd HCS sub-band when
q = 1. There is no HOS sub-band which corresponds to the first odd HCS sub-band.

Figures 2(a) and (b) depict the density distribution of the wavefunction corresponding to
the BS and RS in the wire cross section at q = 30 and p = 1 respectively. The holes are tightly
localized in the vicinity of the boundary for the BS. This agrees with the result presented
by Gutlerrez-Vega et al [20] The wavefunction oscillates in such a way that the oscillation

19



J. Phys. A: Math. Theor. 41 (2008) 395304 I Bejenari and V Kantser

(a) (b)

(c) (d)

(e) ( f )

Figure 2. Counter plot of the T-hole wave function corresponding to (a) boundary state, (b) ring
state, (c) odd hyperbolic caustic state, (d) even hyperbolic caustic state, (e) harmonic oscillator
state at LB = 2 R and ( f ) harmonic oscillator state at LB = 0.3 R. Bismuth wire radius R =
500 nm.

amplitude decays toward the caustic in the boundary ring. For the RS, particles greater localize
near the elliptic caustic than near the boundary.

Figures 2(c) and (d) depict the particle space probability distribution for the hyperbolic
caustic states in the wire cross section at p = 30 and q = 1. In the isotropic mass model, the
holes are localized at the vicinity of the ellipse minimal diameter. The number of eigenfunction
oscillations is equal to 30 along the y-axis as well as 1 (odd state) and 2 (even state) along the
x-axis.

When the set of HCS quantum numbers {p, q} is given by {30, 1} and {120, 1}, the
hyperbolic coordinate is ϕhc = 0.092 rad. (≈5◦) and ϕhc = 0.0461 rad. (≈3◦), correspondingly.
The respective eigenvalues are ωodd(30, 1) = 201 and ωodd(120, 1) = 803. The hyperbolic
coordinate is ϕhc = 0.11 rad. (≈6◦) when the set of quantum numbers {p, q} is given by
{120, 2}. The respective eigenvalues are ωodd(120, 1) = 803 and ωodd(120, 2) = 807. At
the fixed angular momentum quantum number q, the particle localization domain between
two hyperbolic caustics is narrowed when the radial quantum number p increases. Hence, in
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contrast to the BS and RS, the increase of the radial quantum number, p, increases the electron
(hole) localization for HCS.

Figure 2(e) shows the space variation of the probability density for the harmonic oscillator
state hole eigenfunction related to the first (q = 1) HOS sub-band in the wire cross section
when p = 30. It corresponds to the first even HCS sub-band. The second HOS sub-band
corresponds to the second odd HCS sub-band. Since HOS hyperbolic caustic coordinates
are less than the respective HCS caustics, the HOS are greater localized in space than the
HCS. For example, the averaged ϕHOS

hc = 0.124 rad. (≈7◦) and exact ϕHCS
hc = 0.171 rad.

(≈10◦) values correspond to the common eigenvalue ω(30, 1) = 203. If the value of
the eigenvalue is ω(30, 2) = 205, then the values of the hyperbolic caustic coordinate are
ϕHOS

hc = 0.159 rad. (≈9◦) (averaged) and ϕHCS
hc = 0.218 rad. (≈12◦) (exact). The magnetic

field inflects the HOS caustics from their initial position. For instance, the hyperbolic caustic
coordinate is ϕHOS

hc = ±6.98◦ in the absence of the magnetic field (p = 30, q = 1). The
right-hand branch hyperbolic caustic coordinate is ϕHOS

hc (ξbound) = 7.13◦ at the boundary and
ϕHOS

hc (ξ = 0) = 7.11◦ at the intersection with the x-axis. The left-hand branch hyperbolic
caustic coordinate is ϕHOS

hc (ξbound) = −6.83◦ at the boundary and ϕHOS
hc (ξ = 0) = −6.84◦

at the intersection with the x-axis when LB/R = 2. Therefore, the influence of the applied
magnetic field on the hyperbolic caustics is not uniform along the whole length of the caustic.
The number of the HOS eigenfunction oscillations along the x-axis is equal to the number q
of the corresponding HOS sub-band. The number of the oscillations along the y-axis is equal
to the number p of the corresponding HOS sub-band mode. As was noted above, there is no
HOS sub-band which corresponds to the first odd HCS sub-band; therefore, the number of the
HOS eigenfunction oscillations along the x-axis is always greater than 1.

To visually observe the effect of the magnetic field on the HOS hyperbolic caustics, we
have to fall outside the limits of our approximation. Figure 2( f ) depicts the probability density
distribution of the hole HOS eigenfunction when LB/R = 0.3. If the direction of the magnetic
field is changed to the opposite one, then the plot is symmetrically reflected with respect
to the y-axis. Our calculations show that the electron (hole) localization and corresponding
eigenvalues of the BS, RS, HCS and HOS are different. So, they should be treated separately
in the semi-classical approximation.

5. Conclusions

In a weak longitudinal magnetic field, the asymptotic solution of the Schrödinger equation for a
particle confined by the impenetrable elliptic wire boundary gives four different excited states.
There are boundary state (BS) and ring state (RS) grouped together into ‘whispering gallery’
modes. There are hyperbolic caustic state (HCS) and harmonic oscillator state (HOS), which
are grouped together into ‘jumping ball’ modes. The radial quantum number, p, corresponds
to the BS (RS) sub-band and the angular momentum quantum number, q, corresponds to
the respective sub-band modes. The angular momentum quantum number is much greater
than the radial quantum number for these states. As contrasted, the angular momentum
quantum number, q, corresponds to the HCS (HOS) sub-band and radial quantum number, p,
corresponds to the respective HCS (HOS) sub-band modes. In contradistinction to the BS and
RS, the angular momentum quantum number is much less than the radial quantum number for
the HCS and HOS.

The ‘whispering gallery’ mode corresponds to the particle (wave) moving in the ring
restricted by the ellipse boundary and elliptic caustic. Its eigenfunction presents the exponent
function multiplied by the Airy function. The arguments of these functions are series in
terms of E−1/6 (E-energy). The eigenfunction oscillates in the ellipse boundary layer and
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exponentially decays from the elliptic caustic to the ellipse focuses. The boundary ring is
much less for the BS than for the RS.

The ‘jumping ball’ mode corresponds to the particle (wave) moving in the band restricted
by the boundary and two branches of the hyperbolic caustic. The respective eigenfunction
oscillates between the branches of the hyperbolic caustics and exponentially decays from
the hyperbolic caustic to the ellipse focuses. The HCS eigenfunction, like the BS and RS
eigenfunctions, presents the exponent function multiplied by the Airy function. In contrast,
the HOS eigenfunction presents the exponent function multiplied by the parabolic cylinder
function. The argument of the HOS function is series in terms of E−1/4.

For the boundary and ring states, the density of states is enhanced but the particle
localization is diminished when the radial quantum number, p, increases. If the angular
momentum quantum number, q, increases, then both the density of states and electron (hole)
localization increase. The density of hyperbolic caustic states is constant. In the first-
order approximation, both the HCS eigenvalues and hyperbolic caustic are independent of
the magnetic field. For the harmonic oscillator and hyperbolic caustic states, the particle
localization enhances when the radial quantum number, p, increases. In contradistinction to
ring states, this localization diminishes when the angular momentum quantum number, q,
increases.

The applied magnetic field splits caustics and eigenvalues of the BS and RS. This split
decreases when the quantum number, q, increases. Due to the applied magnetic field, the split
between the BS eigenvalues, ω, and caustics, ξ̄ , leads to the following relations: ω(p, q + 1,
−1) = ω(p, q, +1) and ξ ec(p, q + 1, −1) = ξ ec(p, q, +1). For the ring states, these relations are
not valid. The effect of the magnetic field on the elliptic caustic is uniform along the whole
length of the caustic.

There are even and odd hyperbolic caustic states corresponding to the same angular
momentum quantum number, q. The even and odd HCS are defined from the different
dispersion relations. They associate with 2q and 2q − 1 eigenfunction oscillations along the
x-axis. The number of eigenfunction oscillations along the y-axis is given by the quantum
number p.

For the harmonic oscillator states, the eigenvalue is not dependent on the weak magnetic
field. Nevertheless, in contradistinction to the hyperbolic caustic state, the magnetic field
affects the hyperbolic caustic. This effect increases near the wire boundary. Hence, it is not
uniform along the whole length of the hyperbolic caustic. There is no HOS sub-band which
corresponds to the first odd HCS sub-band; therefore, the number of the HOS eigenfunction
oscillations along the x-axis is always greater than 1.
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